Applications of Machine Learning (ML) - The real situation of the Vietnam Fintech Market

Authors

  • Hoang Duc Le National Economic University, Hanoi, Vietnam
  • Giang Huong Nguyen National Economic University, Hanoi, Vietnam
  • An Thuy Bui National Economic University, Hanoi, Vietnam
  • Trang Quynh Le National Economic University, Hanoi, Vietnam
  • Trang Ha Nguyen National Economic University, Hanoi, Vietnam

DOI:

https://doi.org/10.56209/jommerce.v2i2.28

Keywords:

Machine Learning, Vietnam Fintech Market, Financial Institution, Technology

Abstract

Machine Learning (ML) is a well-known term in the technological field. However, using ML models in financial institutions is a matter of concern. In fact, the 4.0 Industry has encouraged them to expand their digital system to bring the best experience for their clients. This journal will discuss the definition and applications of ML, the actual situation of the Vietnam Finetech Market. Thereby, we will make predictions about the future of financial institutions, which determines them to use ML in their activities.

References

Abbasi, K., Alam, A., Du, M. A., & Huynh, T. L. D. (2021). FinTech, SME efficiency and national culture: evidence from OECD countries. Technological Forecasting and Social Change, 163, 120454. https://doi.org/10.1016/j.techfore.2020.120454

Agarwal, J. D., Agarwal, M., Agarwal, A., & Agarwal, Y. (2021). Economics of cryptocurrencies: Artificial intelligence, blockchain, and digital currency. In Information for Efficient Decision Making: Big Data, Blockchain and Relevance (pp. 331-430). https://doi.org/10.1142/9789811220470_0013

Allen, F., Gu, X., & Jagtiani, J. (2021). A survey of fintech research and policy discussion. Review of Corporate Finance, 1, 259-339. https://dx.doi.org/10.21799/frbp.wp.2020.21

Botchey, F. E., Qin, Z., & Hughes-Lartey, K. (2020). Mobile money fraud prediction—a cross-case analysis on the efficiency of support vector machines, gradient boosted decision trees, and Naïve Bayes algorithms. Information, 11(8), 383. https://doi.org/10.3390/info11080383

Dang, T. K., Tran, T. C., Tuan, L. M., & Tiep, M. V. (2021). Machine Learning Based on Resampling Approaches and Deep Reinforcement Learning for Credit Card Fraud Detection Systems. Applied Sciences, 11(21), 10004. https://doi.org/10.3390/app112110004

Eggert, A., Hogreve, J., Ulaga, W., & Muenkhoff, E. (2014). Revenue and profit implications of industrial service strategies. Journal of Service Research, 17(1), 23-39. https://doi.org/10.1177/1094670513485823

Faisal, M. F., Saqlain, M. N. U., Bhuiyan, M. A. S., Miraz, M. H., & Patwary, M. J. (2021, December). Credit Approval System Using Machine Learning: Challenges and Future Directions. In 2021 International Conference on Computing, Networking, Telecommunications & Engineering Sciences Applications (CoNTESA) (pp. 76-82). IEEE. https://doi.org/10.1109/CoNTESA52813.2021.9657153

Hoang, M. D., Le, L., Nguyen, A. T., Le, T., & Nguyen, H. D. (2021). Federated Artificial Intelligence for Unified Credit Assessment. arXiv preprint arXiv:2105.09484. https://doi.org/10.13106/jafeb.2021.vol8.no10.0077

Kowalewski, O., & Pisany, P. (2020). The rise of fintech: a cross-country perspective. https://dx.doi.org/10.2139/ssrn.3624456

Kowalewski, O., Pisany, P., & Slazak, E. (2021). What determines cross-country differences in fintech and bigtech credit markets?. https://dx.doi.org/10.2139/ssrn.3835917

Kumar, A., Sharma, S., & Mahdavi, M. (2021). Machine Learning (ML) Technologies for Digital Credit Scoring in Rural Finance: A Literature Review. Risks, 9(11), 192. https://doi.org/10.3390/risks9110192

Levantesi, S., & Zacchia, G. (2021). Machine learning and financial literacy: An exploration of factors influencing financial knowledge in Italy. Journal of Risk and Financial Management, 14(3), 120. https://doi.org/10.3390/jrfm14030120

Morgan, P. J. (2022). Fintech, financial literacy, and financial education. The Routledge Handbook of Financial Literacy, 239-258. https://doi.org/10.4324/9781003025221-21

Moro-Visconti, R. (2021). Fintechs. In MicroFinTech (pp. 165-202). Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-80394-0_5

Mosavi, A., Faghan, Y., Ghamisi, P., Duan, P., Ardabili, S. F., Salwana, E., & Band, S. S. (2020). Comprehensive review of deep reinforcement learning methods and applications in economics. Mathematics, 8(10), 1640. https://doi.org/10.3390/math8101640

Nguyen, D. M., Chiu, Y. T. H., & Le, H. D. (2021). Determinants of continuance intention towards banks’ chatbot services in Vietnam: A necessity for sustainable development. Sustainability, 13(14), 7625. https://doi.org/10.3390/su13147625

Nguyen, V. L., Lin, P. C., Cheng, B. C., Hwang, R. H., & Lin, Y. D. (2021). Security and privacy for 6G: A survey on prospective technologies and challenges. IEEE Communications Surveys & Tutorials, 23(4), 2384-2428. https://doi.org/10.1109/COMST.2021.3108618

Noor, U., Anwar, Z., Amjad, T., & Choo, K. K. R. (2019). A machine learning-based FinTech cyber threat attribution framework using high-level indicators of compromise. Future Generation Computer Systems, 96, 227-242. https://doi.org/10.1016/j.future.2019.02.013

Pramanik, P., & Jana, R. K. (2022). Identifying research trends of machine learning in business: a topic modeling approach. Measuring Business Excellence. https://doi.org/10.1109/CoNTESA52813.2021.9657153

Saka, O., Eichengreen, B., & Aksoy, C. G. (2021). Epidemic Exposure, Fintech Adoption, and the Digital Divide (No. w29006). National Bureau of Economic Research. https://doi.org/10.3386/w29006

Soni, G., Kumar, S., Mahto, R. V., Mangla, S. K., Mittal, M. L., & Lim, W. M. (2022). A decision-making framework for Industry 4.0 technology implementation: The case of FinTech and sustainable supply chain finance for SMEs. Technological Forecasting and Social Change, 180, 121686. https://doi.org/10.1016/j.techfore.2022.121686

Stojanović, B., Božić, J., Hofer-Schmitz, K., Nahrgang, K., Weber, A., Badii, A., ... & Runevic, J. (2021). Follow the trail: Machine learning for fraud detection in Fintech applications. Sensors, 21(5), 1594. https://doi.org/10.3390/s21051594

Thanh, C. T. (2021, November). A Survey of Machine Learning Techniques for IoT Security. In International Conference on Future Data and Security Engineering (pp. 139-157). Springer, Singapore. https://dx.doi.org/10.1007/978-981-16-8062-5_9

Zabala Aguayo, F., & Ślusarczyk, B. (2020). Risks of banking services’ digitalization: The practice of diversification and sustainable development goals. Sustainability, 12(10), 4040. https://doi.org/10.3390/su12104040

Downloads

Published

2022-06-30