SWACAM and the Future of Self-Service: a TAM Study of Perceptions, Attitudes, and Intentions to Use
DOI:
https://doi.org/10.56209/jommerce.v5i3.181Keywords:
Technology Acceptance , Perceived Usefulness, Behavioral IntentionAbstract
This study aims to analyze customer acceptance of the SWACAM feature in the PLN Mobile application using the Technology Acceptance Model (TAM). Based on data from 181 postpaid customers at PLN UP3 Serpong, this research empirically investigates the impact of perceived ease of use and perceived usefulness on users' attitudes and their intention to use the SWACAM feature. The study employed Partial Least Squares Structural Equation Modeling (PLS-SEM) with SmartPLS software. The findings reveal that both perceived ease of use and perceived usefulness significantly affect user attitudes and intentions. Attitude also mediates the relationship between perception and intention. These results provide practical insights for PLN to enhance the adoption of self-service technologies.
References
Adams, D. A., Nelson, R., Todd, P. A., & Nelson, R. R. (1992). Perceived Usefulness, Ease of Use, and Usage of Information Technology: A Replication Increasing Systems Usage Perceived Usefulness, Ease of Use, and Usage of Information Technology: A Replication. Source: MIS Quarterly, 16(2), 227–247. https://doi.org/10.2307/249577
Afrianti, A. D., & Nugroho, R. H. (2024). The Role of Service Staff in Digitalization at PT. PLN (Persero) ULP Rungkut. Business and Investment Review, 2(6). https://doi.org/10.61292/birev.150
Al-Rahmi, W. M., Yahaya, N., Aldraiweesh, A. A., Alamri, M. M., Aljarboa, N. A., Alturki, U., & Aljeraiwi, A. A. (2019). Integrating Technology Acceptance Model with Innovation Diffusion Theory: An Empirical Investigation on Students’ Intention to Use E-Learning Systems. IEEE Access, 7, 26797–26809. https://doi.org/10.1109/ACCESS.2019.2899368
Bansah, A. K., & Darko Agyei, D. (2022). Perceived convenience, usefulness, effectiveness and user acceptance of information technology: evaluating students’ experiences of a Learning Management System. Technology, Pedagogy and Education, 31(4), 431-449. http://dx.doi.org/10.1080/1475939X.2022.2027267
Boukrouh, I., Tayalati, F., & Azmani, A. (2024, October). Feature importance in predicting customer offer acceptance in online retail. In IET Conference Proceedings CP906 (Vol. 2024, No. 34, pp. 346-351). Stevenage, UK: The Institution of Engineering and Technology. http://dx.doi.org/10.1049/icp.2025.0107
Chen, L. da, Gillenson, M. L., & Sherrell, D. L. (2001). Enticing online consumers: An extended technology acceptance perspective. Information and Management, 39(8), 705–719. https://doi.org/10.1016/S0378-7206(01)00127-6
Cheung, M. F., & To, W. M. (2017). The influence of the propensity to trust on mobile users' attitudes toward in-app advertisements: An extension of the theory of planned behavior. Computers in human behavior, 76, 102-111. http://dx.doi.org/10.1016/j.chb.2017.07.011
Chou, T.-Y. (2020). AT positively affect BI significantly. The International Journal of Organizational Innovation, 13(2), 96. http://www.ijoi-online.org/http://www.ijoi-online.org/
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). Davis1989 (1).Pdf. Management Science, 35(July 2018), 982–1003.
Dirsehan, T., & Cankat, E. (2021). Role of mobile food-ordering applications in developing restaurants’ brand satisfaction and loyalty in the pandemic period. Journal of Retailing and Consumer Services, 62, 102608. https://doi.org/10.1016/j.jretconser.2021.102608
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51–90. https://doi.org/10.2307/30036519
Hair, J. F. (2009). Multivariate data analysis. In Neuromarketing in India: Understanding the Indian Consumer. https://doi.org/10.4324/9781351269360
Hőgye-Nagy, Á., Kovács, G., & Kurucz, G. (2023). Acceptance of self-driving cars among the university community: Effects of gender, previous experience, technology adoption propensity, and attitudes toward autonomous vehicles. Transportation research part F: traffic psychology and behaviour, 94, 353-361. https://doi.org/10.1016/j.trf.2023.03.005
Huang, X., Lin, Y., Lim, M. K., Tseng, M. L., & Zhou, F. (2021). The influence of knowledge management on adoption intention of electric vehicles: perspective on technological knowledge. Industrial Management & Data Systems, 121(7), 1481-1495. http://dx.doi.org/10.1108/IMDS-07-2020-0411
Ilham, M., & Zarnelly, Z. (2021). Analisis Penerimaan Aplikasi PLN Mobile Menggunakan Technology Accpetance Model (TAM). Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, 7(1), 58-62. https://doi.org/10.24014/RMSI.V7I1.11549
Jiang, Y., & Hong, F. (2023). Examining the relationship between customer-perceived value of night-time tourism and destination attachment among Generation Z tourists in China. Tourism Recreation Research, 48(2), 220-233. http://dx.doi.org/10.1080/02508281.2021.1915621
Kim, J., Merrill Jr, K., & Collins, C. (2021). AI as a friend or assistant: The mediating role of perceived usefulness in social AI vs. functional AI. Telematics and Informatics, 64, 101694. https://doi.org/10.1016/j.tele.2021.101694
Kusuma, M. H., & Rahim, S. E. (2021, November). The effectiveness of the new PLN mobile application in improving service quality, customer satisfaction, and electrifying lifestyle during the new normal period in Tanjung pandan city. In IOP Conference Series: Earth and Environmental Science (Vol. 913, No. 1, p. 012050). IOP Publishing. https://doi.org/10.59581/harmoni-widyakarya.v2i4.4431
Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS Quarterly, 31(4), 705–737. https://doi.org/10.2307/25148817
Liu, J., Ellies-Oury, M. P., Stoyanchev, T., & Hocquette, J. F. (2022). Consumer perception of beef quality and how to control, improve and predict it? Focus on eating quality. Foods, 11(12), 1732. https://doi.org/10.3390/foods11121732
Mai, S. M., & Cuong, T. (2020). Relationships between Service Quality, Brand Image, Customer Satisfaction, and Customer Loyalty. Journal of Asian Finance, Economics and Business, 8(3), 585–593. https://doi.org/10.13106/jafeb.2021.vol8.no3.0585
Muñoz-Leiva, F., Climent-Climent, S., & Liébana-Cabanillas, F. (2016). Determinantes de la intención de uso de las aplicaciones de banca para móviles: una extensión del modelo TAM clásico. Spanish Journal of Marketing - ESIC, 21(1), 25–38. https://doi.org/10.1016/j.sjme.2016.12.001
Papakostas, C., Troussas, C., Krouska, A., & Sgouropoulou, C. (2023). Exploring users’ behavioral intention to adopt mobile augmented reality in education through an extended technology acceptance model. International Journal of Human–Computer Interaction, 39(6), 1294-1302. http://dx.doi.org/10.1080/10447318.2022.2062551
Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101–134. https://doi.org/10.1080/10864415.2003.11044275
Pelau, C., Dabija, D. C., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Computers in Human Behavior, 122, 106855. https://doi.org/10.1016/j.chb.2021.106855
Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: An extension of the technology acceptance model. Internet Research, 14(3), 224–235. https://doi.org/10.1108/10662240410542652
Cendika, P., Parawansa, D. A., & Baumassepe, A. N. (2023). NEW PLN MOBILE INNOVATION: TECHNOLOGY ACCEPTANCE MODEL. Paulus Journal of Accounting (PJA), 4(2), 1-9.
Pradipta, F., & Aruan, D. T. H. (2024). Powering Up User Loyalty: Exploring Multidimensional Platform Value And Service Quality In The Pln Mobile Electricity Service Application Platform. Journal of Syntax Literate, 9(12). https://doi.org/10.36418/syntax-literate.v9i12.55140
Prastiawan, D. I., Aisjah, S., & Rofiaty, R. (2021). The effect of perceived usefulness, perceived ease of use, and social influence on the use of mobile banking through the mediation of attitude toward use. APMBA (Asia Pacific Management and Business Application), 9(3), 243-260. https://doi.org/10.21776/ub.apmba.2021.009.03.4
Putra, H. B., Pradita, N., & Hayuningtias, K. A. (2020). Prediksi Niat Penggunaan Aplikasi Dan Permainan Daring Freemium Versi Berbayar Dengan Menggunakan Model Tpb. Managament Insight: Jurnal Ilmiah Manajemen, 15(2), 130–143. https://doi.org/10.33369/insight.15.2.130-143
Shroff, R. H., Deneen, C. C., & Ng, E. M. W. (2011). Analysis of the technology acceptance model in examining students’ behavioural intention to use an e-portfolio system. Australasian Journal of Educational Technology, 27(4), 600–618. https://doi.org/10.14742/ajet.940
Siagian, H., Tarigan, Z. J. H., Basana, S. R., & Basuki, R. (2022). The effect of perceived security, perceived ease of use, and perceived usefulness on consumer behavioral intention through trust in digital payment platform (Doctoral dissertation, Petra Christian University).
Tao, D., Fu, P., Wang, Y., Zhang, T., & Qu, X. (2022). Key characteristics in designing massive open online courses (MOOCs) for user acceptance: An application of the extended technology acceptance model. Interactive Learning Environments, 30(5), 882-895. https://psycnet.apa.org/doi/10.1080/10494820.2019.1695214
Vafaei-Zadeh, A., Ng, S. X., Hanifah, H., Teoh, A. P., & Nawaser, K. (2021). Safety technology adoption: predicting intention to use car dashcams in an emerging country. International Journal of Innovation and Technology Management, 18(05), 2150022. http://dx.doi.org/10.1142/S021987702150022X
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478. https://doi.org/10.1016/j.inoche.2016.03.015
Wang, C., Ahmad, S. F., Ayassrah, A. Y. B. A., Awwad, E. M., Irshad, M., Ali, Y. A., ... & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon, 9(8). http://dx.doi.org/10.1016/j.heliyon.2023.e18349
Wang, L., & Lee, J. H. (2021). The impact of K-beauty social media influencers, sponsorship, and product exposure on consumer acceptance of new products. Fashion and Textiles, 8(1), 15. http://dx.doi.org/10.1186/s40691-020-00239-0
Yang, F., Tang, J., Men, J., & Zheng, X. (2021). Consumer perceived value and impulse buying behavior on mobile commerce: The moderating effect of social influence. Journal of Retailing and Consumer Services, 63, 102683. https://doi.org/10.1016/j.jretconser.2021.102683
Yoon, N., & Lee, H. K. (2021). AI recommendation service acceptance: Assessing the effects of perceived empathy and need for cognition. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1912-1928. https://doi.org/10.3390/jtaer16050107
Zhang, M., Gursoy, D., Zhu, Z., & Shi, S. (2021). Impact of anthropomorphic features of artificially intelligent service robots on consumer acceptance: moderating role of sense of humor. International Journal of Contemporary Hospitality Management, 33(11), 3883-3905. http://dx.doi.org/10.1108/IJCHM-11-2020-1256
Zou, M., & Huang, L. (2023). To use or not to use? Understanding doctoral students’ acceptance of ChatGPT in writing through technology acceptance model. Frontiers in Psychology, 14, 1259531. https://doi.org/10.3389/fpsyg.2023.1259531
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Social Commerce

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.