SWACAM and the Future of Self-Service: a TAM Study of Perceptions, Attitudes, and Intentions to Use

Authors

  • Artina Ningsih Management Department Faculty of Economics and Business, Universitas Stikubank, Semarang, Indonesia
  • Harmanda Berima Putra Management Department Faculty of Economics and Business, Universitas Stikubank, Semarang, Indonesia

DOI:

https://doi.org/10.56209/jommerce.v5i3.181

Keywords:

Technology Acceptance , Perceived Usefulness, Behavioral Intention

Abstract

This study aims to analyze customer acceptance of the SWACAM feature in the PLN Mobile application using the Technology Acceptance Model (TAM). Based on data from 181 postpaid customers at PLN UP3 Serpong, this research empirically investigates the impact of perceived ease of use and perceived usefulness on users' attitudes and their intention to use the SWACAM feature. The study employed Partial Least Squares Structural Equation Modeling (PLS-SEM) with SmartPLS software. The findings reveal that both perceived ease of use and perceived usefulness significantly affect user attitudes and intentions. Attitude also mediates the relationship between perception and intention. These results provide practical insights for PLN to enhance the adoption of self-service technologies.

References

Adams, D. A., Nelson, R., Todd, P. A., & Nelson, R. R. (1992). Perceived Usefulness, Ease of Use, and Usage of Information Technology: A Replication Increasing Systems Usage Perceived Usefulness, Ease of Use, and Usage of Information Technology: A Replication. Source: MIS Quarterly, 16(2), 227–247. https://doi.org/10.2307/249577

Afrianti, A. D., & Nugroho, R. H. (2024). The Role of Service Staff in Digitalization at PT. PLN (Persero) ULP Rungkut. Business and Investment Review, 2(6). https://doi.org/10.61292/birev.150

Al-Rahmi, W. M., Yahaya, N., Aldraiweesh, A. A., Alamri, M. M., Aljarboa, N. A., Alturki, U., & Aljeraiwi, A. A. (2019). Integrating Technology Acceptance Model with Innovation Diffusion Theory: An Empirical Investigation on Students’ Intention to Use E-Learning Systems. IEEE Access, 7, 26797–26809. https://doi.org/10.1109/ACCESS.2019.2899368

Bansah, A. K., & Darko Agyei, D. (2022). Perceived convenience, usefulness, effectiveness and user acceptance of information technology: evaluating students’ experiences of a Learning Management System. Technology, Pedagogy and Education, 31(4), 431-449. http://dx.doi.org/10.1080/1475939X.2022.2027267

Boukrouh, I., Tayalati, F., & Azmani, A. (2024, October). Feature importance in predicting customer offer acceptance in online retail. In IET Conference Proceedings CP906 (Vol. 2024, No. 34, pp. 346-351). Stevenage, UK: The Institution of Engineering and Technology. http://dx.doi.org/10.1049/icp.2025.0107

Chen, L. da, Gillenson, M. L., & Sherrell, D. L. (2001). Enticing online consumers: An extended technology acceptance perspective. Information and Management, 39(8), 705–719. https://doi.org/10.1016/S0378-7206(01)00127-6

Cheung, M. F., & To, W. M. (2017). The influence of the propensity to trust on mobile users' attitudes toward in-app advertisements: An extension of the theory of planned behavior. Computers in human behavior, 76, 102-111. http://dx.doi.org/10.1016/j.chb.2017.07.011

Chou, T.-Y. (2020). AT positively affect BI significantly. The International Journal of Organizational Innovation, 13(2), 96. http://www.ijoi-online.org/http://www.ijoi-online.org/

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). Davis1989 (1).Pdf. Management Science, 35(July 2018), 982–1003.

Dirsehan, T., & Cankat, E. (2021). Role of mobile food-ordering applications in developing restaurants’ brand satisfaction and loyalty in the pandemic period. Journal of Retailing and Consumer Services, 62, 102608. https://doi.org/10.1016/j.jretconser.2021.102608

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51–90. https://doi.org/10.2307/30036519

Hair, J. F. (2009). Multivariate data analysis. In Neuromarketing in India: Understanding the Indian Consumer. https://doi.org/10.4324/9781351269360

Hőgye-Nagy, Á., Kovács, G., & Kurucz, G. (2023). Acceptance of self-driving cars among the university community: Effects of gender, previous experience, technology adoption propensity, and attitudes toward autonomous vehicles. Transportation research part F: traffic psychology and behaviour, 94, 353-361. https://doi.org/10.1016/j.trf.2023.03.005

Huang, X., Lin, Y., Lim, M. K., Tseng, M. L., & Zhou, F. (2021). The influence of knowledge management on adoption intention of electric vehicles: perspective on technological knowledge. Industrial Management & Data Systems, 121(7), 1481-1495. http://dx.doi.org/10.1108/IMDS-07-2020-0411

Ilham, M., & Zarnelly, Z. (2021). Analisis Penerimaan Aplikasi PLN Mobile Menggunakan Technology Accpetance Model (TAM). Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, 7(1), 58-62. https://doi.org/10.24014/RMSI.V7I1.11549

Jiang, Y., & Hong, F. (2023). Examining the relationship between customer-perceived value of night-time tourism and destination attachment among Generation Z tourists in China. Tourism Recreation Research, 48(2), 220-233. http://dx.doi.org/10.1080/02508281.2021.1915621

Kim, J., Merrill Jr, K., & Collins, C. (2021). AI as a friend or assistant: The mediating role of perceived usefulness in social AI vs. functional AI. Telematics and Informatics, 64, 101694. https://doi.org/10.1016/j.tele.2021.101694

Kusuma, M. H., & Rahim, S. E. (2021, November). The effectiveness of the new PLN mobile application in improving service quality, customer satisfaction, and electrifying lifestyle during the new normal period in Tanjung pandan city. In IOP Conference Series: Earth and Environmental Science (Vol. 913, No. 1, p. 012050). IOP Publishing. https://doi.org/10.59581/harmoni-widyakarya.v2i4.4431

Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS Quarterly, 31(4), 705–737. https://doi.org/10.2307/25148817

Liu, J., Ellies-Oury, M. P., Stoyanchev, T., & Hocquette, J. F. (2022). Consumer perception of beef quality and how to control, improve and predict it? Focus on eating quality. Foods, 11(12), 1732. https://doi.org/10.3390/foods11121732

Mai, S. M., & Cuong, T. (2020). Relationships between Service Quality, Brand Image, Customer Satisfaction, and Customer Loyalty. Journal of Asian Finance, Economics and Business, 8(3), 585–593. https://doi.org/10.13106/jafeb.2021.vol8.no3.0585

Muñoz-Leiva, F., Climent-Climent, S., & Liébana-Cabanillas, F. (2016). Determinantes de la intención de uso de las aplicaciones de banca para móviles: una extensión del modelo TAM clásico. Spanish Journal of Marketing - ESIC, 21(1), 25–38. https://doi.org/10.1016/j.sjme.2016.12.001

Papakostas, C., Troussas, C., Krouska, A., & Sgouropoulou, C. (2023). Exploring users’ behavioral intention to adopt mobile augmented reality in education through an extended technology acceptance model. International Journal of Human–Computer Interaction, 39(6), 1294-1302. http://dx.doi.org/10.1080/10447318.2022.2062551

Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101–134. https://doi.org/10.1080/10864415.2003.11044275

Pelau, C., Dabija, D. C., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Computers in Human Behavior, 122, 106855. https://doi.org/10.1016/j.chb.2021.106855

Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: An extension of the technology acceptance model. Internet Research, 14(3), 224–235. https://doi.org/10.1108/10662240410542652

Cendika, P., Parawansa, D. A., & Baumassepe, A. N. (2023). NEW PLN MOBILE INNOVATION: TECHNOLOGY ACCEPTANCE MODEL. Paulus Journal of Accounting (PJA), 4(2), 1-9.

Pradipta, F., & Aruan, D. T. H. (2024). Powering Up User Loyalty: Exploring Multidimensional Platform Value And Service Quality In The Pln Mobile Electricity Service Application Platform. Journal of Syntax Literate, 9(12). https://doi.org/10.36418/syntax-literate.v9i12.55140

Prastiawan, D. I., Aisjah, S., & Rofiaty, R. (2021). The effect of perceived usefulness, perceived ease of use, and social influence on the use of mobile banking through the mediation of attitude toward use. APMBA (Asia Pacific Management and Business Application), 9(3), 243-260. https://doi.org/10.21776/ub.apmba.2021.009.03.4

Putra, H. B., Pradita, N., & Hayuningtias, K. A. (2020). Prediksi Niat Penggunaan Aplikasi Dan Permainan Daring Freemium Versi Berbayar Dengan Menggunakan Model Tpb. Managament Insight: Jurnal Ilmiah Manajemen, 15(2), 130–143. https://doi.org/10.33369/insight.15.2.130-143

Shroff, R. H., Deneen, C. C., & Ng, E. M. W. (2011). Analysis of the technology acceptance model in examining students’ behavioural intention to use an e-portfolio system. Australasian Journal of Educational Technology, 27(4), 600–618. https://doi.org/10.14742/ajet.940

Siagian, H., Tarigan, Z. J. H., Basana, S. R., & Basuki, R. (2022). The effect of perceived security, perceived ease of use, and perceived usefulness on consumer behavioral intention through trust in digital payment platform (Doctoral dissertation, Petra Christian University).

Tao, D., Fu, P., Wang, Y., Zhang, T., & Qu, X. (2022). Key characteristics in designing massive open online courses (MOOCs) for user acceptance: An application of the extended technology acceptance model. Interactive Learning Environments, 30(5), 882-895. https://psycnet.apa.org/doi/10.1080/10494820.2019.1695214

Vafaei-Zadeh, A., Ng, S. X., Hanifah, H., Teoh, A. P., & Nawaser, K. (2021). Safety technology adoption: predicting intention to use car dashcams in an emerging country. International Journal of Innovation and Technology Management, 18(05), 2150022. http://dx.doi.org/10.1142/S021987702150022X

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478. https://doi.org/10.1016/j.inoche.2016.03.015

Wang, C., Ahmad, S. F., Ayassrah, A. Y. B. A., Awwad, E. M., Irshad, M., Ali, Y. A., ... & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon, 9(8). http://dx.doi.org/10.1016/j.heliyon.2023.e18349

Wang, L., & Lee, J. H. (2021). The impact of K-beauty social media influencers, sponsorship, and product exposure on consumer acceptance of new products. Fashion and Textiles, 8(1), 15. http://dx.doi.org/10.1186/s40691-020-00239-0

Yang, F., Tang, J., Men, J., & Zheng, X. (2021). Consumer perceived value and impulse buying behavior on mobile commerce: The moderating effect of social influence. Journal of Retailing and Consumer Services, 63, 102683. https://doi.org/10.1016/j.jretconser.2021.102683

Yoon, N., & Lee, H. K. (2021). AI recommendation service acceptance: Assessing the effects of perceived empathy and need for cognition. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1912-1928. https://doi.org/10.3390/jtaer16050107

Zhang, M., Gursoy, D., Zhu, Z., & Shi, S. (2021). Impact of anthropomorphic features of artificially intelligent service robots on consumer acceptance: moderating role of sense of humor. International Journal of Contemporary Hospitality Management, 33(11), 3883-3905. http://dx.doi.org/10.1108/IJCHM-11-2020-1256

Zou, M., & Huang, L. (2023). To use or not to use? Understanding doctoral students’ acceptance of ChatGPT in writing through technology acceptance model. Frontiers in Psychology, 14, 1259531. https://doi.org/10.3389/fpsyg.2023.1259531

Downloads

Published

2025-09-28